• Home
  • Facility
    • ATLSS Facility
    • Personnel
    • IT Security
  • NEES
  • Safety
    • Notice
  • Projects
  • Resources
    • User’s Guide
    • Science Plan
    • Cybersecurity
    • Supported Software
    • Lehigh Data Model
    • RDV
    • Publications
      • 2014
      • 2013
      • 2012
      • 2011
      • 2010
      • 2009
      • 2008
      • 2007
      • 2006
      • 2005
      • 2004
      • 2003
      • 2002
    • Workshops
      • October 2011
      • November 2015
      • December 2016
  • Multimedia
    • Photos
      • William Allen High School Trip
      • Elastomeric Damper Installation
      • Victaulic Seismic Testing Photos
      • DBF Assembly
      • MISST Construction
      • SC-CBF Base Detail Study
      • BRBF Construction
      • BRBF Testing
      • BRBF Results
      • Composite MRF System with CFT Column Setup
      • Composite MRF System with CFT Column Results
    • Videos
      • Buckling-Restrained Braced Frame Videos
      • MRF System with CFT Columns Videos
      • MISST Videos
      • Victaulic Seismic Testing Videos
      • Diaphragm Seismic Design Methodology Videos
      • SC-MRF Videos
      • SC-CBF Videos
      • Impact Forces from Tsunami-driven Debris Videos
      • Advanced Damping Systems Videos
      • In The News Media
  • EOT
    • REU Program
  • News
  • Contact
  • Links
You are here: Home / Projects / Advanced Damping Systems

Performance-Based Design and Real-Time Large-Scale Testing to Enable Implementation of Advanced Damping Systems


Print Friendly, PDF & Email

Project Summary

Vibration can cause structural damage, leading to downtime of the structure, and possible life loss of the occupants. Numerous research has been devoted to vibration control techniques. Semi-active Magneto Rheological (MR) has been shown to be particularly promising in achieving better seismic performance over passive control while addressing a number of challenges facing active control. The adaptability of structures using these semi-active devices to extreme loading is expected to effectively minimize the seismic hazard. However, such innovative systems have been slow to be applied in practice due to a lack of appropriate design procedures and adequate testing methods to validate these systems.

This project will involve developing a simplified performance-based design procedure for steel frame structures with MR dampers. Multiple performance objectives, each of which is associated with a specific damage level for a selected seismic hazard level will be considered. Through the performance-based design procedure, the MR damping devices will be integrated into the design of seismic load resisting frames. The design procedure developed will be evaluated and validated using the existing real-time hybrid simulation test bed at the Lehigh NEES equipment site.

Project Description

Magneto Rheological (MR) damper are particularly suitable for civil engineering applications due to their high force capacity and reliable design. The inherently stable nature of these devices makes it possible to implement high authority control strategies for better performance against severe seismic hazard. Various models and control algorithms have been developed to simulate and control the behavior of a structural system with MR dampers. Due to the nonlinear nature of MR dampers, researchers typically simplify the system to consider the MR damper as a linear device to develop a nominal design. This nominal design is then iteratviely adjusted to account for the nonlinear properties of the MR damper and the control laws. Optimization or iterative nonlinear time history analyses are usually recommended to size and place the dampers to minimize the response quantities of strutural systems subjected to earthquakes. This approach greatly inhibits the application of MR dampers into practical design, since engineering design offices are not suited for this type of analysis and design.

This project will develop a performance-based design procedure where a prototype steel frame with MR dampers is designed as an integrated system to satisfy different performance objectives associated with selected hazard levels. Multiple performance levels (operational (OP), immediate occupancy (IO), life-safety (LS) and collapse prevention (CP)) and multiple seismic hazard levels (frequently occurring earthquake (FOE), design basis earthquake (DBE), or maximum considered earthquake (MCE)) will be considered. The objective of this design procedure is to facillitate the practical design of building structures with MR dampers. Real-time hybrid simulation will be used to validate the developed design procedure, where the MR dampers are isolated as the experimental substructures and the rest of the building structure is modeled analytically. Thus different design structures can be considered and evaluated in a cost-effective manner. Existing control laws for the damper will be evaluated, and consideration given towards developing new ones. However, developing methods for real-time hybrid (RTH) testing of these systems is essential to enable the validation of these approaches. In this NEESR project, large-scale structural models, controlled with MR devices are being tested at the Lehigh RTMD NEES Equipment Site using RTH techniques.

Further validation studies are the real-time hybrid simulations (RTHS) performed at Lehigh University NEES facility. The RTHS tests a 9-story benchmark structure equipped with one or two MR dampers (installed in the 1st and 2nd stories, respectively), using the two large-scale MR dampers and the large-scale steel frame constructed in the lab at Lehigh. The purpose of this testing is four-fold: (1) validate the performance of a new semi-active control algorithms developed during the project, (2) identification of the designed-braced frame built in the Lehigh lab, (3) design of the adaptive actuator compensation scheme, and (4) design of the model-based feedforward-feedback actuator compensation scheme.

Schematic of MR Damper Test Setup for Damper Characterization

Photos of Test Setup

Hybrid Setup for Floor Testing

Hybrid Setup for Floor Testing

Behavior of Large-Scale MR dampers

MR Damper

MR Damper

 

Connection in Frame

Connection in Frame

Overview of DBF

Overview of DBF

Side angle view of DBF

Side angle view of DBF

 

Structure Configuration

Structure Configuration

Hybrid Structure

Hybrid Structure

Structure in Lab

Structure in Lab

Link to Videos

Sponsors

National Science Foundation (NSF)

Participants

Investigators

Shirley J. Dyke – Purdue University
James M. Ricles – Lehigh University
Richard Sause – Lehigh University
Bill F. Spencer – University of Illinois, Urbana Champaign
Richard Christenson – University of Connecticut
Anil K. Agrawal – City College of New York

NEES Project Archive

  • Categories

    • News and Events
    • Project Spotlight
  • Recent News

    • Building cladding as multi-hazard protection
    • NHERI Lehigh Seminar Series
    • Test to see how special wood structures fare in quakes
  • Archives

    • ► 2018 (1)
      • ► March (1)
        • Building cladding as multi-hazard protection
    • ► 2017 (2)
      • ► October (1)
        • NHERI Lehigh Seminar Series
      • ► July (1)
        • Test to see how special wood structures fare in quakes
    • ► 2015 (1)
      • ► September (1)
        • Lehigh wins $5M for natural hazards engineering research
    • ► 2014 (5)
      • ► November (1)
        • Everest grad and Lehigh REU student builds robot to study earthquakes
      • ► September (1)
        • Testing of NEESR-CR: Post-Tensioned Coupled Shear Wall Systems at Lehigh University Friday, November 10, 2014
      • ► May (2)
        • Full-scale, components test of Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures
        • Souderton Area H.S. students from the civil/structural engineering class recently visited ATLSS and Fritz Lab.
      • ► April (1)
        • Engineers re-create tsunami debris impacts to measure their force
    • ► 2013 (10)
      • ► November (1)
        • Testing of NEESR-CR: Post-Tensioned Coupled Shear Wall Systems at Lehigh University Friday, November 08, 2013
      • ► October (3)
        • NEESreu Program Highlights at Lehigh University, Summer 2013
        • Full-scale testing of partially-grouted, reinforced concrete masonry wall structure
        • Job Opening at ATLSS
      • ► September (1)
        • Real-time Hybrid Simulations of a Large-scale Steel Structure with Elastomeric Dampers
      • ► July (1)
        • Real-time Hybrid Simulations of a Large-scale Steel Structure with Nonlinear Viscous Dampers Subjected to the Maximum Considered Earthquake Hazard Level
      • ► June (1)
        • 2013 REU Schedule Posted
      • ► May (1)
        • TechGYRLS Tour ATLSS lab
      • ► April (1)
        • Real-time Hybrid Simulations of a Large-scale Steel Structure with Nonlinear Viscous Dampers
      • ► February (1)
        • RTHS being performed this week
    • ► 2012 (3)
      • ► December (1)
        • Simulating Earthquakes by Combining Analytical Models with Physical Structures
      • ► June (1)
        • Hybrid Simulation Data Model now supported with NEEShub Release 4.0
      • ► March (1)
        • Researchers probe how strong buildings must be to survive tsunamis
    • ► 2011 (9)
      • ► August (2)
        • Advances in Real Time Hybrid Simulation Workshop
        • Upcoming workshop
      • ► March (3)
        • Seismic Hazard Mitigation using Passive Damper Systems
        • Distributed RT Hybrid Testing
        • Pictures from William Allen HS Field Trip
      • ► February (2)
        • Student Field Trip this Friday
        • Testing on passive damping systems
      • ► January (2)
        • NEES equipment maintenance
        • "Megaquake 10.0" History Channel Special Features NEES Projects
    • ► 2010 (3)
      • ► December (1)
        • MR Damper Projects
      • ► September (1)
        • SteelDay 2010
      • ► June (1)
        • ATLSS Welcomes the 2010 NEES REU Students
    • ► 2009 (3)
      • ► July (1)
        • Three ATLSS Center researchers honored by American Society of Civil Engineers
      • ► May (1)
        • ATLSS welcomes the 2009 REU Students
      • ► February (1)
        • Lehigh Webinar for RTMD users
    • ► 2008 (12)
      • ► November (1)
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF Hybrid Simulation for High-Level MCE
      • ► October (4)
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF Hybrid Simulation for Aftershock
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF Median MCE Hybrid Simulation
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF High-Level DBE/Median MCE Hybrid Simulation
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF High-Level DBE Hybrid Simulation
      • ► September (1)
        • ATLSS involved in Discovery Channel program
      • ► August (1)
        • "The Works" highlights ATLSS
      • ► July (1)
        • RTMD hosts Launch-IT
      • ► May (3)
        • ATLSS Seminar: Overview of Structures for 2008 Olympic Games
        • 2008 NEES REU program begins
        • Germantown High students get all shook up on field trip
      • ► March (1)
        • 3D Model Panel for RDV Update
    • ► 2007 (6)
      • ► November (1)
        • RTMD Highlights for November, 2007
      • ► October (1)
        • RTMD Highlights for October, 2007
      • ► September (1)
        • RTMD Highlights for September, 2007
      • ► June (1)
        • RTMD Highlights for June, 2007
      • ► May (1)
        • RTMD Highlights for May, 2007
      • ► February (1)
        • RTMD Highlights for February, 2007
    • ► 2006 (8)
      • ► November (1)
        • RTMD Highlights for November, 2006
      • ► July (1)
        • RTMD Highlights for July, 2006
      • ► June (1)
        • RTMD Highlights for June, 2006
      • ► May (1)
        • RTMD Highlights for May, 2006
      • ► April (1)
        • RTMD Highlights for April, 2006
      • ► March (1)
        • RTMD Highlights for March, 2006
      • ► February (1)
        • RTMD Highlights for February, 2006
      • ► January (1)
        • RTMD Highlights for January, 2006
    • ► 2005 (5)
      • ► December (1)
        • RTMD Highlights for December, 2005
      • ► November (1)
        • RTMD Highlights for November, 2005
      • ► October (1)
        • Hybrid Testing Workshop in San Diego
      • ► August (1)
        • E-Defense Workshop
      • ► June (1)
        • Self Centering Workshop
    • ► 2004 (1)
      • ► October (1)
        • NEES@Lehigh begins

[site map] Copyright © 2017 · All Rights Reserved · Lehigh University · The Lehigh NHERI Experimental Facility is supported by a grant from the National Science Foundation (#1520765). Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.