• Home
  • Facility
    • ATLSS Facility
    • Personnel
    • IT Security
  • NEES
  • Safety
    • Notice
  • Projects
  • Resources
    • User’s Guide
    • Science Plan
    • Cybersecurity
    • Supported Software
    • Lehigh Data Model
    • RDV
    • Publications
      • 2014
      • 2013
      • 2012
      • 2011
      • 2010
      • 2009
      • 2008
      • 2007
      • 2006
      • 2005
      • 2004
      • 2003
      • 2002
    • Workshops
      • October 2011
      • November 2015
      • December 2016
  • Multimedia
    • Photos
      • William Allen High School Trip
      • Elastomeric Damper Installation
      • Victaulic Seismic Testing Photos
      • DBF Assembly
      • MISST Construction
      • SC-CBF Base Detail Study
      • BRBF Construction
      • BRBF Testing
      • BRBF Results
      • Composite MRF System with CFT Column Setup
      • Composite MRF System with CFT Column Results
    • Videos
      • Buckling-Restrained Braced Frame Videos
      • MRF System with CFT Columns Videos
      • MISST Videos
      • Victaulic Seismic Testing Videos
      • Diaphragm Seismic Design Methodology Videos
      • SC-MRF Videos
      • SC-CBF Videos
      • Impact Forces from Tsunami-driven Debris Videos
      • Advanced Damping Systems Videos
      • In The News Media
  • EOT
    • REU Program
  • News
  • Contact
  • Links
You are here: Home / Project Spotlight / Full-scale, components test of Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures

Full-scale, components test of Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures

May 29, 2014  

Leave a Comment

Print Friendly, PDF & Email

The NEESR project entitled NEESR: Inertial Force-Limiting Floor Anchorage Systems For Seismic Resistant Building Structures (PI: R. Fleischman, J. Restrepo, R. Sause) is currently conducting a full-scale components test at the Real-time Multi-directional (RTMD) Earthquake Simulation Facility, the Lehigh NEES Equipment Site.

The testing of the anchorage system that uses a Buckling Restrained Brace in parallel with low damping rubber bearings will take place on Thursday, May 29, 2014 starting at 11 a.m. EST. Remote participation is available here: http://tpm.nees.lehigh.edu/portal?section=local_video

The inertial force generated in building systems during an earthquake ground motion is directly related to the floor – diaphragm acceleration and the seismic mass by the Newton’s second law of motion. In conventional earthquake resistant building systems the gravity load resisting system (GLRS), in particular, the floor system, where most of the seismic mass is located, is rigidly attached to the lateral force resisting system (LFRS), which resists the seismic inertial force. The inertial force is transferred from the GLRS to the LFRS assuming a rigid connection between the floor and the LFRS. An earthquake resistant building system that controls the earthquake induced floor acceleration in order to limit the generated inertial force and increase the reliability of the structure against collapse is being developed by a research team led by University of Arizona (R. Fleischman), and including University of California at San Diego (J. Restrepo) and Lehigh University (R. Sause).

The analysis, development, and experimental assessment of an innovative connection system between the floor and the lateral force resisting system for earthquake-resistant buildings is the focus of this research program. The main objective is to control of the response of the structure by limiting the floor acceleration, the inertial force and reducing the damage on the lateral force resisting system and the gravity load resisting system

Useful Links:

http://www.rtmd.lehigh.edu/projects/inertial-force-limiting-floor-anchorage-systems-for-seismic-resistant-
building-structures

http://www.neesr2011-rbf-ceem.arizona.edu/

http://nees.ucsd.edu/projects/2013-floor-anchorage/video-specimen-i.shtml

Practical Application

Practical Application

Large Scale Test at NEES@Lehigh RTMD Facility

Large Scale Test at NEES@Lehigh RTMD Facility

[View project page]

Comments are closed.

  • Categories

    • News and Events
    • Project Spotlight
  • Recent News

    • Building cladding as multi-hazard protection
    • NHERI Lehigh Seminar Series
    • Test to see how special wood structures fare in quakes
  • Archives

    • ► 2018 (1)
      • ► March (1)
        • Building cladding as multi-hazard protection
    • ► 2017 (2)
      • ► October (1)
        • NHERI Lehigh Seminar Series
      • ► July (1)
        • Test to see how special wood structures fare in quakes
    • ► 2015 (1)
      • ► September (1)
        • Lehigh wins $5M for natural hazards engineering research
    • ► 2014 (5)
      • ► November (1)
        • Everest grad and Lehigh REU student builds robot to study earthquakes
      • ► September (1)
        • Testing of NEESR-CR: Post-Tensioned Coupled Shear Wall Systems at Lehigh University Friday, November 10, 2014
      • ► May (2)
        • Full-scale, components test of Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures
        • Souderton Area H.S. students from the civil/structural engineering class recently visited ATLSS and Fritz Lab.
      • ► April (1)
        • Engineers re-create tsunami debris impacts to measure their force
    • ► 2013 (10)
      • ► November (1)
        • Testing of NEESR-CR: Post-Tensioned Coupled Shear Wall Systems at Lehigh University Friday, November 08, 2013
      • ► October (3)
        • NEESreu Program Highlights at Lehigh University, Summer 2013
        • Full-scale testing of partially-grouted, reinforced concrete masonry wall structure
        • Job Opening at ATLSS
      • ► September (1)
        • Real-time Hybrid Simulations of a Large-scale Steel Structure with Elastomeric Dampers
      • ► July (1)
        • Real-time Hybrid Simulations of a Large-scale Steel Structure with Nonlinear Viscous Dampers Subjected to the Maximum Considered Earthquake Hazard Level
      • ► June (1)
        • 2013 REU Schedule Posted
      • ► May (1)
        • TechGYRLS Tour ATLSS lab
      • ► April (1)
        • Real-time Hybrid Simulations of a Large-scale Steel Structure with Nonlinear Viscous Dampers
      • ► February (1)
        • RTHS being performed this week
    • ► 2012 (3)
      • ► December (1)
        • Simulating Earthquakes by Combining Analytical Models with Physical Structures
      • ► June (1)
        • Hybrid Simulation Data Model now supported with NEEShub Release 4.0
      • ► March (1)
        • Researchers probe how strong buildings must be to survive tsunamis
    • ► 2011 (9)
      • ► August (2)
        • Advances in Real Time Hybrid Simulation Workshop
        • Upcoming workshop
      • ► March (3)
        • Seismic Hazard Mitigation using Passive Damper Systems
        • Distributed RT Hybrid Testing
        • Pictures from William Allen HS Field Trip
      • ► February (2)
        • Student Field Trip this Friday
        • Testing on passive damping systems
      • ► January (2)
        • NEES equipment maintenance
        • "Megaquake 10.0" History Channel Special Features NEES Projects
    • ► 2010 (3)
      • ► December (1)
        • MR Damper Projects
      • ► September (1)
        • SteelDay 2010
      • ► June (1)
        • ATLSS Welcomes the 2010 NEES REU Students
    • ► 2009 (3)
      • ► July (1)
        • Three ATLSS Center researchers honored by American Society of Civil Engineers
      • ► May (1)
        • ATLSS welcomes the 2009 REU Students
      • ► February (1)
        • Lehigh Webinar for RTMD users
    • ► 2008 (12)
      • ► November (1)
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF Hybrid Simulation for High-Level MCE
      • ► October (4)
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF Hybrid Simulation for Aftershock
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF Median MCE Hybrid Simulation
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF High-Level DBE/Median MCE Hybrid Simulation
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF High-Level DBE Hybrid Simulation
      • ► September (1)
        • ATLSS involved in Discovery Channel program
      • ► August (1)
        • "The Works" highlights ATLSS
      • ► July (1)
        • RTMD hosts Launch-IT
      • ► May (3)
        • ATLSS Seminar: Overview of Structures for 2008 Olympic Games
        • 2008 NEES REU program begins
        • Germantown High students get all shook up on field trip
      • ► March (1)
        • 3D Model Panel for RDV Update
    • ► 2007 (6)
      • ► November (1)
        • RTMD Highlights for November, 2007
      • ► October (1)
        • RTMD Highlights for October, 2007
      • ► September (1)
        • RTMD Highlights for September, 2007
      • ► June (1)
        • RTMD Highlights for June, 2007
      • ► May (1)
        • RTMD Highlights for May, 2007
      • ► February (1)
        • RTMD Highlights for February, 2007
    • ► 2006 (8)
      • ► November (1)
        • RTMD Highlights for November, 2006
      • ► July (1)
        • RTMD Highlights for July, 2006
      • ► June (1)
        • RTMD Highlights for June, 2006
      • ► May (1)
        • RTMD Highlights for May, 2006
      • ► April (1)
        • RTMD Highlights for April, 2006
      • ► March (1)
        • RTMD Highlights for March, 2006
      • ► February (1)
        • RTMD Highlights for February, 2006
      • ► January (1)
        • RTMD Highlights for January, 2006
    • ► 2005 (5)
      • ► December (1)
        • RTMD Highlights for December, 2005
      • ► November (1)
        • RTMD Highlights for November, 2005
      • ► October (1)
        • Hybrid Testing Workshop in San Diego
      • ► August (1)
        • E-Defense Workshop
      • ► June (1)
        • Self Centering Workshop
    • ► 2004 (1)
      • ► October (1)
        • NEES@Lehigh begins

[site map] Copyright © 2017 · All Rights Reserved · Lehigh University · The Lehigh NHERI Experimental Facility is supported by a grant from the National Science Foundation (#1520765). Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.