• Home
  • Facility
    • ATLSS Facility
    • Personnel
    • IT Security
  • NEES
  • Safety
    • Notice
  • Projects
  • Resources
    • User’s Guide
    • Science Plan
    • Cybersecurity
    • Supported Software
    • Lehigh Data Model
    • RDV
    • Publications
      • 2014
      • 2013
      • 2012
      • 2011
      • 2010
      • 2009
      • 2008
      • 2007
      • 2006
      • 2005
      • 2004
      • 2003
      • 2002
    • Workshops
      • October 2011
      • November 2015
      • December 2016
  • Multimedia
    • Photos
      • William Allen High School Trip
      • Elastomeric Damper Installation
      • Victaulic Seismic Testing Photos
      • DBF Assembly
      • MISST Construction
      • SC-CBF Base Detail Study
      • BRBF Construction
      • BRBF Testing
      • BRBF Results
      • Composite MRF System with CFT Column Setup
      • Composite MRF System with CFT Column Results
    • Videos
      • Buckling-Restrained Braced Frame Videos
      • MRF System with CFT Columns Videos
      • MISST Videos
      • Victaulic Seismic Testing Videos
      • Diaphragm Seismic Design Methodology Videos
      • SC-MRF Videos
      • SC-CBF Videos
      • Impact Forces from Tsunami-driven Debris Videos
      • Advanced Damping Systems Videos
      • In The News Media
  • EOT
    • REU Program
  • News
  • Contact
  • Links
You are here: Home / Projects / PBD for Seismic Hazard Mitigation

NEESR-CR: Performance-Based Design for Cost-Effective Seismic Hazard Mitigation in New Buildings Using Supplemental Passive Damper Systems


Print Friendly, PDF & Email

Project Overview

The vision for the project is a validated multi-level, probabilistic, performance-based seismic design procedure for buildings with supplemental passive damping systems. In this procedure, the design of the damping system is integrated with the design of the associated seismic load resisting frames, and the uncertainties that influence the level of damage caused by ground motions at different seismic hazard (input) levels are treated explicitly. The procedure considers multiple performance objectives, with each objective associating a different level of damage with a different seismic hazard level. The project will design two steel-framed prototype buildings as the context for the research. Several types of dampers will be studied. Tests at the Lehigh NEES equipment site will characterize the dampers; analytical models for the dampers will be calibrated and validated. Extending previous work, a practical performance-based design procedure, and an associated design assessment procedure for buildings with passive dampers will be developed. These procedures treat inherent uncertainties using partial safety factors. The performance-based design procedure will be used to produce several design cases for each prototype building, by varying the strength of the steel frames and the damper type. Then, each design case will be assessed with a rigorous, probabilistic assessment procedure developed by the project. This assessment uses nonlinear dynamic analyses, and considers numerous damage states while rigorously treating uncertainties in building properties, damping systems, and ground motions. The procedure estimates the probabilities that these damage states are reached at different seismic hazard (input) levels. Large-scale real-time hybrid pseudo-dynamic simulations at the Lehigh NEES equipment site will validate the rigorous assessment procedure as well as the results of the practical design procedure. The hybrid simulations will have two phases: Phase 1 uses three individual large-scale dampers as the lab specimens, while the remainder of the building is modeled as analytical substructures; Phase 2 uses a large-scale 3-story steel frame with one damper at each story as the lab specimen, while the remainder of the building modeled as analytical substructures. Phase 1 simulations will be particularly efficient, by enabling numerous ground motions to be applied to the building, resulting in various levels of damage, without the need to repair the test specimens, since the damage will be within the analytical substructures. Phase 2 simulations will validate this approach.

Viscous Damper Phase

Experiment Announcement Page Phase 1 (with Video Results)

Experiment Announcement Page Phase 2

DBF Assembly
DBF Assembly

Assembly of the DBF system

23 Photos

Viscous Dampers

Viscous Dampers

Viscous Damper Testbed

Viscous Damper Testbed

Plan View

Plan View

Hybrid System

Hybrid System

Elastomeric Damper Phase

Experiment Announcement Page

Elastomeric Damper Installation
Elastomeric Damper Installation

Installation of the Elastomeric Damper

23 Photos

 

Participants

Principal Investigators

  • Richard Sause – Lehigh University

Co-Principal Investigators

  • James Ricles – Lehigh University
  • Richard Sause – Lehigh University
  • Behzad Bavarian – California State University Northridge
  • Roger Di Julio – California State University Northridge
  • Fillipe J Perez – California State Polytechnic University Pomona

Graduate Research Assistant

  • Akbar Mahvashmohammadi – Lehigh University
  • Baiping Dong – Lehigh University

Academic Collaborators

  • Robert Michael – Penn State Erie
  • Shannon Sweeney – Penn State Erie

Industry

  • Corry Rubber Company
  • Taylor Devices
  • Simpson Gumpertz & Heger
  • Miyamoto International, Inc.

International Collaboration

  • Kazuhiko Kasai –  Tokyo Institute of Technology

NEES Project Archive

  • Categories

    • News and Events
    • Project Spotlight
  • Recent News

    • Building cladding as multi-hazard protection
    • NHERI Lehigh Seminar Series
    • Test to see how special wood structures fare in quakes
  • Archives

    • ► 2018 (1)
      • ► March (1)
        • Building cladding as multi-hazard protection
    • ► 2017 (2)
      • ► October (1)
        • NHERI Lehigh Seminar Series
      • ► July (1)
        • Test to see how special wood structures fare in quakes
    • ► 2015 (1)
      • ► September (1)
        • Lehigh wins $5M for natural hazards engineering research
    • ► 2014 (5)
      • ► November (1)
        • Everest grad and Lehigh REU student builds robot to study earthquakes
      • ► September (1)
        • Testing of NEESR-CR: Post-Tensioned Coupled Shear Wall Systems at Lehigh University Friday, November 10, 2014
      • ► May (2)
        • Full-scale, components test of Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures
        • Souderton Area H.S. students from the civil/structural engineering class recently visited ATLSS and Fritz Lab.
      • ► April (1)
        • Engineers re-create tsunami debris impacts to measure their force
    • ► 2013 (10)
      • ► November (1)
        • Testing of NEESR-CR: Post-Tensioned Coupled Shear Wall Systems at Lehigh University Friday, November 08, 2013
      • ► October (3)
        • NEESreu Program Highlights at Lehigh University, Summer 2013
        • Full-scale testing of partially-grouted, reinforced concrete masonry wall structure
        • Job Opening at ATLSS
      • ► September (1)
        • Real-time Hybrid Simulations of a Large-scale Steel Structure with Elastomeric Dampers
      • ► July (1)
        • Real-time Hybrid Simulations of a Large-scale Steel Structure with Nonlinear Viscous Dampers Subjected to the Maximum Considered Earthquake Hazard Level
      • ► June (1)
        • 2013 REU Schedule Posted
      • ► May (1)
        • TechGYRLS Tour ATLSS lab
      • ► April (1)
        • Real-time Hybrid Simulations of a Large-scale Steel Structure with Nonlinear Viscous Dampers
      • ► February (1)
        • RTHS being performed this week
    • ► 2012 (3)
      • ► December (1)
        • Simulating Earthquakes by Combining Analytical Models with Physical Structures
      • ► June (1)
        • Hybrid Simulation Data Model now supported with NEEShub Release 4.0
      • ► March (1)
        • Researchers probe how strong buildings must be to survive tsunamis
    • ► 2011 (9)
      • ► August (2)
        • Advances in Real Time Hybrid Simulation Workshop
        • Upcoming workshop
      • ► March (3)
        • Seismic Hazard Mitigation using Passive Damper Systems
        • Distributed RT Hybrid Testing
        • Pictures from William Allen HS Field Trip
      • ► February (2)
        • Student Field Trip this Friday
        • Testing on passive damping systems
      • ► January (2)
        • NEES equipment maintenance
        • "Megaquake 10.0" History Channel Special Features NEES Projects
    • ► 2010 (3)
      • ► December (1)
        • MR Damper Projects
      • ► September (1)
        • SteelDay 2010
      • ► June (1)
        • ATLSS Welcomes the 2010 NEES REU Students
    • ► 2009 (3)
      • ► July (1)
        • Three ATLSS Center researchers honored by American Society of Civil Engineers
      • ► May (1)
        • ATLSS welcomes the 2009 REU Students
      • ► February (1)
        • Lehigh Webinar for RTMD users
    • ► 2008 (12)
      • ► November (1)
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF Hybrid Simulation for High-Level MCE
      • ► October (4)
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF Hybrid Simulation for Aftershock
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF Median MCE Hybrid Simulation
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF High-Level DBE/Median MCE Hybrid Simulation
        • NEESR-SG: Self-Centering Damage-Free Seismic-Resistant Steel Frame Systems SC-MRF High-Level DBE Hybrid Simulation
      • ► September (1)
        • ATLSS involved in Discovery Channel program
      • ► August (1)
        • "The Works" highlights ATLSS
      • ► July (1)
        • RTMD hosts Launch-IT
      • ► May (3)
        • ATLSS Seminar: Overview of Structures for 2008 Olympic Games
        • 2008 NEES REU program begins
        • Germantown High students get all shook up on field trip
      • ► March (1)
        • 3D Model Panel for RDV Update
    • ► 2007 (6)
      • ► November (1)
        • RTMD Highlights for November, 2007
      • ► October (1)
        • RTMD Highlights for October, 2007
      • ► September (1)
        • RTMD Highlights for September, 2007
      • ► June (1)
        • RTMD Highlights for June, 2007
      • ► May (1)
        • RTMD Highlights for May, 2007
      • ► February (1)
        • RTMD Highlights for February, 2007
    • ► 2006 (8)
      • ► November (1)
        • RTMD Highlights for November, 2006
      • ► July (1)
        • RTMD Highlights for July, 2006
      • ► June (1)
        • RTMD Highlights for June, 2006
      • ► May (1)
        • RTMD Highlights for May, 2006
      • ► April (1)
        • RTMD Highlights for April, 2006
      • ► March (1)
        • RTMD Highlights for March, 2006
      • ► February (1)
        • RTMD Highlights for February, 2006
      • ► January (1)
        • RTMD Highlights for January, 2006
    • ► 2005 (5)
      • ► December (1)
        • RTMD Highlights for December, 2005
      • ► November (1)
        • RTMD Highlights for November, 2005
      • ► October (1)
        • Hybrid Testing Workshop in San Diego
      • ► August (1)
        • E-Defense Workshop
      • ► June (1)
        • Self Centering Workshop
    • ► 2004 (1)
      • ► October (1)
        • NEES@Lehigh begins

[site map] Copyright © 2017 · All Rights Reserved · Lehigh University · The Lehigh NHERI Experimental Facility is supported by a grant from the National Science Foundation (#1520765). Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.